RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5' terminus of the negative-sense S segment.

نویسندگان

  • J C Osborne
  • R M Elliott
چکیده

The genome of Bunyamwera virus (BUN) (family Bunyaviridae, genus Bunyavirus) comprises three negative-sense RNA segments which act as transcriptional templates for the viral polymerase only when encapsidated by the nucleocapsid protein (N). Previous studies have suggested that the encapsidation signal may reside within the 5' terminus of each segment. The BUN N protein was expressed as a 6-histidine-tagged fusion protein in Escherichia coli and purified by metal chelate chromatography. An RNA probe containing the 5'-terminal 32 and 3'-terminal 33 bases of the BUN S (small) genome segment was used to investigate binding by the N protein in vitro using gel mobility shift and filter binding assays. On acrylamide gels a number of discrete RNA-N complexes were resolved, and analysis of filter binding data indicated a degree of cooperativity in N protein binding. RNA-N complexes were resistant to digestion with up to 1 microg of RNase A per ml. Competition assays with a variety of viral and nonviral RNAs identified a region within the 5' terminus of the BUN S segment for which N had a high preference for binding. This site may constitute the signal for initiation of encapsidation by N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome.

The genome of Bunyamwera virus (BUN; family Bunyaviridae, genus Orthobunyavirus) comprises three segments of negative-sense, single-stranded RNA. The RNA segments are encapsidated by the viral nucleocapsid (N) protein and form panhandle-like structures through interaction of complementary sequences at their 5' and 3' termini. Transcription and replication of a BUN genome analogue (minireplicon)...

متن کامل

Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates

The genome of Bunyamwera virus (BUNV) comprises three RNA segments that are encapsidated by the virus-encoded nucleocapsid (N) protein to form ribonucleoprotein (RNP) complexes. These RNPs are the functional templates for RNA synthesis by the virus-encoded RNA-dependent RNA polymerase (RdRp). We investigated the roles of conserved positively charged N-protein amino acids in RNA binding, in olig...

متن کامل

Mutational analyses of the nonconserved sequences in the Bunyamwera Orthobunyavirus S segment untranslated regions.

Bunyamwera virus (BUNV) is the prototype of the genus Orthobunyavirus and the family Bunyaviridae. BUNV has a tripartite genome of negative-sense RNA composed of small (S), medium (M), and large (L) segments. Partially complementary untranslated regions (UTRs) flank the coding region of each segment. The terminal 11 nucleotides of these UTRs are conserved between the three segments and througho...

متن کامل

Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation.

Bunyamwera virus (BUNV), which belongs to the genus Orthobunyavirus, is the prototypical virus of the Bunyaviridae family. Similar to other negative-sense single-stranded RNA viruses, bunyaviruses possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation and virus replication. The structures of two NPs of members of different genera within the Bunyaviridae family have been rep...

متن کامل

Complementarity, sequence and structural elements within the 3' and 5' non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength.

The genome of Bunyamwera virus (BUN; family Bunyaviridae) consists of three segments of negative-sense, single-stranded RNA that are called L (large), M (medium) and S (small), according to their size. The genomic RNAs are encapsidated by the viral nucleocapsid protein to form ribonucleoprotein complexes (RNPs). The terminal 3' and 5' non-coding sequences are complementary and interact to give ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 74 21  شماره 

صفحات  -

تاریخ انتشار 2000